cubic root - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

cubic root - перевод на русский

NUMBER WHICH PRODUCES A GIVEN NUMBER WHEN CUBED
Cubic root; Cube Root; Cube roots; Third root; ؆; Numerical methods for calculating cube roots
  • 1=''x'' = 0}} this graph has a [[vertical tangent]].
  • A002580}}).
Найдено результатов: 698
cubic root         

математика

кубический корень

cubic root         
кубический корень
cube root         

[kju:b'ru:t]

общая лексика

кубичный корень

математика

кубический корень

third root         

математика

кубический корень

cardinal spline         
  • Cardinal spline example in 2D. The line represents the curve, and the squares represent the control points <math>\boldsymbol{p}_k</math>. Notice that the curve does not reach the first and last points; these points do, however, affect the shape of the curve. The tension parameter used is 0.1
  • Example with finite-difference tangents
  • The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions.
SPLINE WHERE EACH PIECE IS A THIRD-DEGREE POLYNOMIAL SPECIFIED IN HERMITE FORM: THAT IS, BY ITS VALUES AND FIRST DERIVATIVES AT THE END POINTS OF THE CORRESPONDING DOMAIN INTERVAL
Cubic spline; Cubic Hermite curve; Cubic Hermite curves; Cardinal spline; Catmull-Rom spline; Hermite curve; Hermite curves; Cubic interpolation; Cubic hermite spline; Catmull–Rom spline; Cspline; Catmull-Rom; Cubic Hermite Polynomial; Draft:Cubic interpolation

математика

фундаментальный сплайн

cubic interpolation         
  • Cardinal spline example in 2D. The line represents the curve, and the squares represent the control points <math>\boldsymbol{p}_k</math>. Notice that the curve does not reach the first and last points; these points do, however, affect the shape of the curve. The tension parameter used is 0.1
  • Example with finite-difference tangents
  • The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions.
SPLINE WHERE EACH PIECE IS A THIRD-DEGREE POLYNOMIAL SPECIFIED IN HERMITE FORM: THAT IS, BY ITS VALUES AND FIRST DERIVATIVES AT THE END POINTS OF THE CORRESPONDING DOMAIN INTERVAL
Cubic spline; Cubic Hermite curve; Cubic Hermite curves; Cardinal spline; Catmull-Rom spline; Hermite curve; Hermite curves; Cubic interpolation; Cubic hermite spline; Catmull–Rom spline; Cspline; Catmull-Rom; Cubic Hermite Polynomial; Draft:Cubic interpolation

математика

кубическая интерполяция

cubic honeycomb         
  • 320px
  • 240px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 120px
  • 80px
  • 80px
  • 240px
  • 80px
  • 80px
  • 220px
  • 80px
  • 80px
  • 120px
  • 80px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 80px
  • 80px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 80px
  • 200px
  • 120px
  • 80px
  • 190px
  • 80px
  • 240px
  • The bitruncated cubic honeycomb shown here in relation to a cubic honeycomb
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 120px
  • 160px
  • 160px
  • 110px
  • 112px
  • 110px
  • 194px
  • 80px
  • 80px
  • 40px
  • 100px
  • 80px
  • 80px
  • 80px
  • 80px
  • 320px
  • 100px
  • 80px
  • 80px
  • 80px
  • 200px
  • 80px
  • 80px
  • 80px
  • 80px
  • 320px
  • 120px
  • 190px
  • 200px
  • 200px
  • 320px
  • 80px
  • 80px
  • 80px
  • 40px
  • 80px
  • 80px
  • 60px
  • 40px
  • 40px
  • 80px
  • 80px
  • 300px
  • 40px
  • 40px
  • 25px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 25px
  • 40px
ONLY REGULAR SPACE-FILLING TESSELLATION OF THE CUBE
Truncated cubic honeycomb; Rectified cubic honeycomb; Cantellated cubic honeycomb; Runcitruncated cubic honeycomb; Cantitruncated cubic honeycomb; Omnitruncated cubic honeycomb; Truncated square prismatic honeycomb; Snub square prismatic honeycomb; Runcinated cubic honeycomb; 3-cube honeycomb; Alternated cantitruncated cubic honeycomb; Regular cubic honeycomb; Runcicantellated cubic honeycomb; Runcinated cubic honycomb; D3 lattice; Snub rectified cubic honeycomb; Runcic cantitruncated cubic honeycomb; Alternated omnitruncated cubic honeycomb; Cubic cellulation; Rectified cubic cellulation; Truncated cubic cellulation; Cantellated cubic cellulation; Runcinated cubic cellulation; Cantitruncated cubic cellulation; Runcitruncated cubic cellulation; Omnitruncated cubic cellulation; Simo-square prismatic cellulation; Tomo-square prismatic cellulation; Quarter oblate octahedrille; Square quarter pyramidille; Triangular pyramidille; Order-3-4 square honeycomb; Cantic snub cubic honeycomb

математика

кубические соты

cubic spline         
  • Cardinal spline example in 2D. The line represents the curve, and the squares represent the control points <math>\boldsymbol{p}_k</math>. Notice that the curve does not reach the first and last points; these points do, however, affect the shape of the curve. The tension parameter used is 0.1
  • Example with finite-difference tangents
  • The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions.
SPLINE WHERE EACH PIECE IS A THIRD-DEGREE POLYNOMIAL SPECIFIED IN HERMITE FORM: THAT IS, BY ITS VALUES AND FIRST DERIVATIVES AT THE END POINTS OF THE CORRESPONDING DOMAIN INTERVAL
Cubic spline; Cubic Hermite curve; Cubic Hermite curves; Cardinal spline; Catmull-Rom spline; Hermite curve; Hermite curves; Cubic interpolation; Cubic hermite spline; Catmull–Rom spline; Cspline; Catmull-Rom; Cubic Hermite Polynomial; Draft:Cubic interpolation

математика

кубический сплайн

root chord         
  • Play}}
  • Play}}.
NOTE AFTER WHICH A CHORD IS NAMED
Root (music); Basse fondamentale; Root progression; Root note; Fundamental bass; Chord root; Five-three chord; Root chord; Assumed root; Absent root; Omitted root; Root-position; Basse fondementale; Son fondamentale; Harmonic root; Root of chord

общая лексика

корневая хорда

rooted         
  • Roots forming above ground on a cutting of an ''Odontonema'' ("Firespike")
  • Aerial root
  • Fluorescent imaging of an emerging lateral root.
  • barley]] root
  • Coralloid roots of ''[[Cycas revoluta]]''
  • Cross section of a [[mango]] tree
  • Large, mature tree roots above the soil
  • Aerating roots of a [[mangrove]]
  • Roots on onion bulbs
  • Cross section of an adventitous crown root of pearl millet (''Pennisetum glaucum)''
  • Root system of adult ''[[Araucaria heterophylla]]''
  • Stilt roots of Maize plant
  • Ranunculus Root Cross Section
  • Roots of trees
  • The growing tip of a fine root
  • Roots can also protect the environment by holding the soil to reduce soil erosion
  • The stilt roots of ''[[Socratea exorrhiza]]''
  • Tree roots at [[Cliffs of the Neuse State Park]]
  • alt=
  • [[Ficus]] Tree with [[buttress root]]s
  • Visible roots
ORGAN OF A HIGHER PLANT THAT ANCHORS THE REST OF THE PLANT IN THE GROUND, ABSORBS WATER AND MINERAL SALTS FROM THE SOIL, AND DOES NOT BEAR LEAVES OR BUDS
Rooted; Root (botany); Tree root; Plant roots; Plant root; Shallow-rooted; Shallow rooted; Deep-rooted; Deep rooted; Peg root; Adventitious Root; Root (plant)

['ru:tid]

общая лексика

корневой

с корнем

укоренивший

прилагательное

общая лексика

имеющий корни

с корнями

укоренившийся (о растениях)

укоренившийся

коренящийся

твёрдый (о привычке, мнении, убеждении и т. п.)

глубокий (о чувстве)

хронический

скрытый (о болезни)

вкоренившийся

глубокий (о чувстве)

Определение

cube root
n. to find, extract the cube root

Википедия

Cube root

In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted 8 3 {\displaystyle {\sqrt[{3}]{8}}} , is 2, because 23 = 8, while the other cube roots of 8 are 1 + i 3 {\displaystyle -1+i{\sqrt {3}}} and 1 i 3 {\displaystyle -1-i{\sqrt {3}}} . The three cube roots of −27i are

3 i , 3 3 2 3 2 i , and 3 3 2 3 2 i . {\displaystyle 3i,\quad {\frac {3{\sqrt {3}}}{2}}-{\frac {3}{2}}i,\quad {\text{and}}\quad -{\frac {3{\sqrt {3}}}{2}}-{\frac {3}{2}}i.}

In some contexts, particularly when the number whose cube root is to be taken is a real number, one of the cube roots (in this particular case the real one) is referred to as the principal cube root, denoted with the radical sign     3 . {\displaystyle {\sqrt[{3}]{~^{~}}}.} The cube root is the inverse function of the cube function if considering only real numbers, but not if considering also complex numbers: although one has always ( x 3 ) 3 = x , {\displaystyle \left({\sqrt[{3}]{x}}\right)^{3}=x,} the cube of a nonzero number has more than one complex cube root and its principal cube root may not be the number that was cubed. For example, ( 1 + i 3 ) 3 = 8 {\displaystyle (-1+i{\sqrt {3}})^{3}=8} , but 8 3 = 2. {\displaystyle {\sqrt[{3}]{8}}=2.}

Как переводится cubic root на Русский язык